來(lái)源:網(wǎng)絡(luò)資源 2023-10-13 20:17:55
〖圓的公式〗
1.圓的周長(zhǎng)C=2πr=πd
2.圓的面積S=πr²
3.扇形弧長(zhǎng)l=nπr/180
4.扇形面積S=nπr²/360=rl/2
5.圓錐側(cè)面積S=πrl
〖圓的定義〗
幾何說(shuō):平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
軌跡說(shuō):平面上一動(dòng)點(diǎn)以一定點(diǎn)為中心,一定長(zhǎng)為距離運(yùn)動(dòng)一周的軌跡稱為圓周,簡(jiǎn)稱圓。
集合說(shuō):到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫做圓。
〖圓的相關(guān)量〗
圓周率:圓周長(zhǎng)度與圓的直徑長(zhǎng)度的比叫做圓周率,值是
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...,
通常用π表示,計(jì)算中常取3.14為它的近似值(但奧數(shù)常取3或3.1416)。
圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。
圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
內(nèi)心和外心:過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
〖圓和圓的相關(guān)量字母表示方法〗
圓—⊙ 半徑—r 弧—⌒ 直徑—d 扇形弧長(zhǎng)/圓錐母線—l 周長(zhǎng)—C 面積—S
〖圓和其他圖形的位置關(guān)系〗
圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
直線與圓有3種位置關(guān)系:
無(wú)公共點(diǎn)為相離;
有兩個(gè)公共點(diǎn)為相交;
圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
以直線AB與圓O為例(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r
【圓的平面幾何性質(zhì)和定理】
⑴圓的確定:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。圓的對(duì)稱性質(zhì):圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的2條弧。
⑵有關(guān)圓周角和圓心角的性質(zhì)和定理:在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
⑶有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
①一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;
②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。
③S三角=1/2*△三角形周長(zhǎng)*內(nèi)切圓半徑
④兩相切圓的連心線過(guò)切點(diǎn)(連心線:兩個(gè)圓心相連的線段)
〖有關(guān)切線的性質(zhì)和定理〗
圓的切線垂直于過(guò)切點(diǎn)的半徑;經(jīng)過(guò)半徑的一端,并且垂直于這條半徑的直線,是這個(gè)圓的切線。
切線判定定理:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線。
切線的性質(zhì):
(1)經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線。
(2)經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心。
(3)圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
切線長(zhǎng)定理:從圓外一點(diǎn)到圓的兩條切線的長(zhǎng)相等,那點(diǎn)與圓心的連線平分切線的夾角。
【圓的解析幾何性質(zhì)和定理】
圓的標(biāo)準(zhǔn)方程:在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是(x-a)^2+(y-b)^2=r^2。
圓的一般方程:把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0。和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F(xiàn)=a^2+b^2。
圓的離心率e=0,在圓上任意一點(diǎn)的曲率半徑都是r。
編輯推薦:
2023年全國(guó)各省市中考報(bào)名時(shí)間匯總
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2025中考一路陪伴同行!>>點(diǎn)擊查看